Wednesday, February 1, 2017: 9:45 AM-10:45 AM
Commercial and Industrial IAQ
Chair:
Gang Tan, Ph.D., P.E., University of Wyoming
Technical Committee: 4.10 Indoor Environmental Modeling
Health problems related to poor IAQ have appeared more frequently in recent years. Indoor pollutants may be generated indoors or can ingress from the outdoor environment. This seminar presents pollutant source control in a hospital by optimizing the air intake design to avoid helicopter exhaust fume entrainment, and local air quality controls through detailed ventilation design for two industrial facilities to meet the requirements of health and safety legislation. Due to complexity of the IAQ related problems, three-dimensional CFD simulations provide informative calculations and help to understand air flows and particulate concentrations during the design process.
1 Design Analysis of the Intakes Using CFD in Hospitals to Avoid Helicopter Exhaust Fume Entrainment and Improving IAQ
Transporting patients to the hospitals in emergencies, the heliport is usually located on the roof of the hospital. This may cause the exhaust emitting from the helicopter to get into the air-intakes of the ventilation equipment on the roof, open entrances, and windows, leading to odor complaints and health related issues inside the hospital. Considering complexity of the problem and number of the design parameters, this study used CFD to investigate the helicopter exhaust fume entrainments into the hospital under different wind directions and speed, which helps find the optimum placement for air-intakes to reduce the particles and gas entrainment.
2 Design Considerations for Industrial Health and Sustainability in Large Aircraft Painting Facilities
Protecting the health of aircraft painters in an industrial environment that contains hazardous metals and organics motivates design and operation of hangar ventilation systems for maximum effectiveness, with a secondary consideration of energy use in these large and tempered spaces. There lacks of consensus regarding optimal air velocities in vehicular painting facilities. This study evaluated cross-flow velocity vs. exposure at approximately 50, 75, and 100 fpm, during fixed- and rotary-wing aircraft painting, using CFD, tracer experiments, and personal exposure monitoring. Contaminant removal effectiveness (CRE) was greater for crossflow ventilation than for other airflow path designs.
3 Using Displacement Ventilation for Airborne Particle Control in an Industrial Space
It is well known that displacement ventilation can potentially decrease energy usage while improving indoor air quality. There is little to no guidance on how to apply displacement ventilation in an industrial setting for the purposes of controlling airborne particles. The presentation focuses on a large factory space where the control of manganese particles from the welding processes is of primary concern. CFD simulations with particle tracking are used to assess the effectiveness of the design and highlight the most important design parameters that affect breathing zone particle concentrations.