Wednesday, February 1, 2017: 8:00 AM-9:30 AM
Commercial and Industrial IAQ
Chair:
Wangda Zuo, Ph.D., University of Miami
Technical Committee: 4.10 Indoor Environmental Modeling
Designing an indoor environment with good indoor air quality is often a practice of guess-and-correction which is a lengthy process. This seminar introduces how to achieve the desired IAQ for various indoor environment through various inverse designs. Speakers discuss the concept and methodology of inverse design for IAQ. Then the usage of inverse design is demonstrated through applications for offices and aircraft cabins.
1 Inverse Design of Enclosed Environment By Adjoint Method
This presentation discusses how to conduct optimal design of an indoor environment based on specific design objectives by controlling the thermo-fluid boundary conditions, such as air supply location, size, and parameters. This study used a CFD-based adjoint method to identify the othermo-fluid boundary conditions. Through defining the air distribution in a certain area (design domain) as a design objective in an indoor space, the adjoint method can identify the air supply location, size, and parameters. The adjoint method can only achieve local design optimal but the computing costs did not depend on the number of design variables.
2 Inverse Modeling for Optimization of Indoor Air Quality
This talk presents a method that combines the genetic algorithm (GA) with computational fluid dynamics (CFD) technique, which can efficiently optimize the flow inlet conditions with various objective functions. A coupled simulation platform based on GenOpt (GA program) and Fluent (CFD program) was developed. Two new design methods were provided: the constraint method and the optimization method. A simple 2-D office and an aircraft cabin were evaluated, as demonstrations, which reveal both methods have superior performance in system design. The optimization method provides more accurate results while the constraint method needs less computation efforts.
3 Inverse Design of Cabin Air-Supply Parameters By CFD-Based Proper Orthogonal Decomposition
This investigation proposes to adopt proper orthogonal decomposition (POD) to inversely design multiple air-supply parameters based on the specified design targets. The method first sampled some thermo-flow data by full CFD simulations, and then the orthogonal spatial modes and their coefficients are extracted. The above method was applied to design the air-supply opening size, air-supply direction and temperature in a three-dimensional cabin with the constraint of a fixed ventilation rate. The results show that the proposed method is able to efficiently determine the air-supply temperatures and directions simultaneously.