Sunday, January 29, 2017: 9:45 AM-10:45 AM
Fundamentals and Applications
Chair:
Mark Hegberg, Hegberg & Associates
This session covers the fundamentals surrounding water flow measurement in hydronic systems. Why, how, what. Hydronic systems (chilled water, heating hot water, or condenser water) are effectively a HVAC transmission. Pumps, pipes and valves make-up the envelop and their effectiveness can be measured by the volume flow rate of water in the pipe. We measure flow rate through pressure drop - such as valves, orifices, venturis, equipment losses; by pump curve; and with throughput measurement equipment such as ultrasonic and magnetic meters. The merits and practicalities of each are covered here.
1 Hydronic Water Flow Measurement: Part 1
This presentation covers the fundamentals surrounding water flow measurement in hydronic systems. Why, how, what. Hydronic systems (chilled water, heating hot water, or condenser water) are effectively a HVAC transmission. Pumps, pipes, and valves make-up the envelop and their effectiveness can be measured by the volume flow rate of water in the pipe. Flow rate is measured through pressure drop - such as valves, orifices, venturis, equipment losses; by pump curve; and with throughput measurement equipment such as ultrasonic and magnetic meters. The merits and practicalities of each are covered.
2 Submetering By Using Pumps
Submetering is recognized as a mean to optimize building performance, but can be expensive to implement. New electronically controlled pumps, which need to be there in any case, have a lot of built in functionalities which can be used for submetering. These functionalities were initially developed to control the pump itself, but are today interfacing with the BMS system to optimize building performance. This presentation gives an overview of measurement signals, which are typically available from an electronically controlled pump, the accuracy of these signals and how they can be used for submetering.