Elastocaloric cooling has been recognized as a potential alternative and supplementary technology to the state-of-the-art vapor compression cooling systems. It is based on the elastocaloric effect found in shape memory alloys associated with the solid-solid martensitic phase transformation induced by stress. The fundamental thermodynamics of the martensitic phase change process will be introduced. Elsatocaloric cooling material following the single stage Brayton cycle and the system design will be presented. With the commercially available nickel-titanium tubes, we will demonstrate two compressive elastocaloric cooling prototypes developed in University of Maryland. Experimental test results and potential performance improvement methods will be presented.
See more of: Advanced Non-Vapor Compression Cycles