Ambient particulate matter (PM) air pollution is critical to human health and well-being given the association of urban air pollution with increased respiratory and cardiovascular mortality. For urban office buildings in big cities, use of economizers has dramatically increased recently for energy saving and ventilation purposes. The objective of this paper is to examine outdoor-indoor transports of ozone and PM2.5 (particles < 2.5 micron in diameter) for urban office buildings considering economizer operating modes. This study employs multi-zone contaminant transport model for prediction of outdoor-indoor pollutant dynamics in two cities: Los Angeles and Beijing. The model simulates an infiltration of ambient ozone, PM2.5 (< 2.5 micron), into a DOE reference building (medium office) based on outdoor climate condition, outdoor intake and filtration efficiency. Seasonal variations are also considered to capture the influences of high ozone levels during the summer in LA and elevated particle concentrations during the spring season in Beijing.
See more of: Fine and Ultrafine Particle Filtration