3 Evaluation of Fault Detection and Diagnosis Methods for Air and Water Distribution Systems Using Virtual Flow MetersĀ (ST-16-C023)

Koosha Kiamehr, University of Miami
Alejandro Rivas Prieto
Wesley M. Thomas, University of Oklahoma
Gang Wang, P.E., University of Miami
Li Song, Ph.D., P.E., University of Oklahoma
Faults in heating, ventilation and air conditioning (HVAC) systems results in excessive energy waste and space comfort issues. In this study, the goal is to identify fan belt slippage and pressure setpoint override faults. These faults can be easily detected based on the correlation of head, flow and power for fans and pumps. However, due to the lack of flow meters in HVAC systems, currently, these faults have to be detected by either model-based or rule-based fault detection and diagnosis (FDD) approaches. Model based approaches generally require high computational time, which makes them unsuitable for real time applications.  The rule based approaches use other operating data rather than flow rate and cannot accurately detect these faults. On the other hand, a virtual flow meter technology, which determines flow based on the measured head and power of fans and pumps, makes the flow measurement accurately and economically without the need of physical flow meters. The purpose of this paper is to evaluate a FDD method for faults in air and water distribution systsms using the measured head and power along with a virtual flow meter. First, the correlation between power and head and the correlation between the head and flow are derived without and with faults based on fan and pump performance and system curves. Then experiment is conducted to validate develop FDD method by comparing the actual corrections with the fault free correlations. The results show the proposed FDD method can effectively detect these faults.

Register now!