

ABOUT ASHRAE

ASHRAE Organization Information

ASHRAE is...

- A Professional Organization supporting engineers, contractors, mfr., and others in the building industry
- 57,000 members in 132 countries
- Headquartered in Atlanta
- a Standards writing organization
- The leader in the industry for standards and guidelines involving building systems, energy efficiency, indoor air quality.

...a diverse organization dedicated to advancing the arts and sciences of heating, ventilation, air conditioning and refrigeration to serve humanity and promote a sustainable world.

OUR TEAM:

Architects:

- HOUSER WALKER ARCHITECTURE
- MCLENNAN DESIGN

PME Engineer:

- INTEGRAL GROUP

Commissioning Agent:

- EPSTEN GROUP

Contractor:

- SKANSKA

Owner's Project Representative:

- Collins Project Management

Existing ASHRAE Headquarters

- 1791 Tullie Circle NE, Atlanta, GA
- 35,000 sq. ft. building – 2 stories with learning center on 1st level
- Renovated in 2010 to LEED Platinum level
- Sold to CHOA in 2018

PROJECT GOAL

Project Goal:

To renovate a 1970's building into a high-performing net-zero-ready facility in a cost-effective method that can be replicated in the industry.

What is our Story?

"Our organization relies on harvesting the technical knowledge, volunteer energy, and expertise of our members. We want this space to inspire visitors to participate and honor them for their volunteer service and commitment."

– Jeff Littleton, Executive VP for ASHRAE

New ASHRAE Headquarters

- 180 Technology Parkway, Peachtree Corners, GA
- 66,000 sq. ft. building – 3 stories
- Built in 1970's
- Purchased in Dec. 2018

OWNER PROJECT REQUIREMENTS

Owner's Project Requirement Document establishes owner goals:

Mission Critical Items:

- **SAFETY** – safe work environment and construction
- **AFFORDABLE** – to be constructed within the available budget
- **EXCEED ASHRAE applicable Standards requirements**
- **ACOUSTICS** – Exceed Acoustical levels for Office Environments
- **NET ZERO ENERGY** – to meet low EUI levels

OWNER PROJECT REQUIREMENTS

OPR Requirements to achieve Goals:

- ASHRAE Standard 189.1-2017 – Exceed the requirements
- Demand Side Site Energy Consumption of less than 21.4 kBtu/SF/yr. (stretch goal to 15 kBtu/SF/yr)
- Water Efficiency design such that the project obtains 11 of 11 LEED water use efficiency points
- Limit maximum daytime plug load to 0.4 W/SF
- Exceed Acoustic requirements listed in ASHRAE Applications Handbook by 3-5 NC/RNC
- Deliver Outside air at a value of at least 1.3 times the requirements of Standard 62.1 and use Demand Control Ventilation (DCV) for high-occupancy spaces.
- Achieve Spatial Daylighting Autonomy (SDA) – Majority of Occupants achieve generous Daylighting in work space 55% of the time.
- Achieve Resiliency at a level established by ASHRAE.

OWNER PROJECT REQUIREMENTS

Metering Requirements:

Mandatory

- HVAC energy
- Lighting energy
- Plug Load energy
- Whole Building energy
- Photovoltaics energy
- Domestic Hot Water Energy

Desirable

- Domestic Water Usage
- Cooling Tower water usage
- Irrigation Water Usage
- Domestic Hot Water Usage

ASHRAE STANDARDS we have to meet or exceed...

ANSI/ASHRAE/IES Standard 90.1-2016

ANSI/ASHRAE 55-2017

ANSI/ASHRAE 62.1-2016

ASHRAE Standard 189.1-2017

ASHRAE Guideline 0-2013

ASHRAE Guideline 1-2017

ASHRAE Thermal Guidelines for Data Processing Environments

ASHRAE Advanced Energy Design Guide for Zero Energy Office Buildings

OWNER PROJECT REQUIREMENTS

Certification Programs Studied

- LEED
- Green Globes
- WELL Building
- FitWel
- Living Building Challenge
- ASHRAE Building EQ**

Schedule Constraints

HOW DO WE ACHIEVE OUR PROJECT GOAL?

Request for Proposal for Planning and Design Services

ASHRAE
New Headquarters Building
Peachtree Center, GA
January 4, 2019

TABLE OF CONTENTS
1. Introduction and Project Description
2. Proposal Requirements
3. Instructions

- Set Construction Budget: \$ 8,570,000 (\$130/sq. ft. minus donations & PV)
- Set Project Schedule: Must move out by Oct., 2020
- Set Project Criteria: Owner Project Requirements were set
- Hire the right team!

Existing Upper Level Floor Plan

Program Summary

Initial Program (areas in NSF):

Departmental Areas:

Administrative Staff:	1,044
Marketing:	2,005
Development:	633
Member Services:	1,137
Technology:	1,089
Finance & Admin Services:	1,713
Publications & Education:	2,383

Shared Conference/Meeting: 4,500

Service Spaces: 7,961

Conference Center: 6,180

Total Net Program Area: 28,725

Gross Program Area: 44,000 gsf (approx.)

Existing Middle Level Floor Plan

Existing Structure

Interior Infrastructure

Frame

Wall Panels

Annual Air & Ground Temperature Profiles

Key Climate Factors: Atlanta, Georgia

Key Climate Design Drivers

- Summer:** May to September (Avg OA > 70°F)
 - Extreme Heat Period: Jul 8 - Jul 12
 - Extreme Temp: 95°F (90°F) - 100°F (95°F)
 - Estimate to account for:
 - High solar gains in May-September
 - Minimize unwanted summer solar to minimize unwanted summer solar
 - Leverage passive low-energy passive cooling strategies.
- Winter:** December to February (Avg OA < 50°F)
 - Extreme Cold/Weak Period: Jan 6 - Jan 12
 - Extreme Temp: 20°F (15°F) - 30°F (25°F)
 - Leverage passive solar gains through south-facing windows and shading to reduce supplemental heating requirements.
- Diurnal Swing:** Average Diurnal swing between 15-24°C suggests an opportunity to leverage thermal mass and passive cooling strategies to reduce cooling energy, and improve occupant thermal comfort.
- Ground and Water Temperature:** Relatively stable ground and lake temperatures suggest a potential heat source and sink for the HVAC system.

DRAFT 2019 AIR & GROUND TEMPERATURES

Glazing

Incident Solar Radiation - WINTER

Key Climate Factors: Atlanta, Georgia

WINTER INCIDENT SOLAR RADIATION - BASELINE

(December 2nd - February 23rd (Avg OA < 50°F))

WINTER INCIDENT SOLAR RADIATION BY FAÇADE ORIENTATION

(December 2nd - February 23rd (Avg OA < 50°F))

Regenerative Design

Energy Use Characterization

ASHRAE Headquarters

Interactive Graph: <https://www.energycycle.nyc/optimizashrae>

Envelope Sensitivity Analysis

ASHRAE Headquarters

Preliminary envelope performance targets based on point of diminishing Energy Use Intensity (EUI) savings shown at right:

Parameter	Existing	ASHRAE 90.1	Recommended
Wall Assembly	U=0.37 (R=3.0)	U=0.12 (R=8.3)	U=0.09 (R=11.1)
Roof Assembly	U=0.047 (R=21)	U=0.039 (R=25)	U=0.028 (R=33)
Window Assembly	U=0.53 SHGC=0.52	U=0.45 SHGC=0.25	U=0.40 SHGC=0.25
Windows: Wall Ratio	-50%	40%	40%
External Shading Device Depth	N/A	N/A	1' (Optimal for visual, thermal)
Infiltration	0.026 cf m/s ²	0.046 cf m/s ²	0.011 cf m/s²

ASHRAE NZE AEDG recommends R-15.6 wall for Climate Zone 3!

Interactive Graph: <https://www.energycycle.nyc/optimizashrae>

Existing Envelope + ASHRAE 90.1 HVAC

Energy Analysis Assumptions

ASHRAE Headquarters

General Parameters	Envelope	Existing	ASHRAE 90.1	Recommended
Project/Building	ASHRAE HQ			
Occupancy	Office	U=0.3 (R=3.3)	U=0.12 (R=8.3)	U=0.09 (R=11.1)
Location	Atlanta, GA			
Weather File	Atlanta, GA Climate Zone	U=0.047 (R=21)	U=0.039 (R=25)	U=0.028 (R=33)
Envelope	U=0.53 SHGC=0.52	U=0.45 SHGC=0.25	U=0.40 SHGC=0.25	
Window to Wall Ratio	-50%	40%	40%	
External Shading Device Depth	N/A	N/A	1' (Optimal for visual, thermal)	
Infiltration	0.026 cf m/s ²	0.046 cf m/s ²	0.011 cf m/s²	

Primary Envelope Factors

Window to Wall Ratios (WWR)

Important to define the optimum area of openings relative to achieving daylight autonomy goals, as well as maximize the thermal efficiency of the wall.

Air Infiltration and Inseulation

Where was the optimal R-Value for each part of the exterior envelope and how were we containing air infiltration.

High Performance Envelope

Insulation, Air Tight Construction, External Shading, Daylighting

Schematic Design Integration

Open Office | Relationship to Light

Schematic Design Integration

EXISTING RIBBON WINDOWS AND EXISTING GLASS DAYLIGHT PATTERNS

40% WWR N & S, 30% WWR E & W + EXISTING WINDOWHEAD DAYLIGHT PATTERNS

ASHRAE

ASHRAE

ASHRAE

Daylight Strategies

Daylights

Adding skylights reduces the daylight area in the upper floor. Reducing the daylight area in the upper floor will also offer opportunity for electric light dimming. The number of skylights must be reduced for VE purposes. 10 skylights are required, but 18 skylights shown at right (in blue) be maintained at minimum.

Raised Windows

Raising the window height increases the daylight area percentage from 30-40% compared to the VE Design. SD proposed windows can be reduced if budget permits.

Interior Dark Layout

Tell interior dark partitions existing parallel to the liquid module avoided in order to maintain side lighting benefits.

HVAC Option 1: All-Air TZHP System

System Type

Reducing Packed Thermodynamically Zoned ASHPs with DOAS, variable heat recovery, DDC, and a desiccant wheel.

Air Distribution Options

Centralized ASHP

Mixed-Mode Ventilation

Operable windows and fan-reduced

Supply fans with variable control

Night-Frost/Airside Economizer

For cooling up-heat

HVAC Option 2: Hydronic Systems

DOAS

With variable heat recovery and DDC
Option 1A: Air-to-air desiccant wheel
Option 1B: Air-to-air heat recovery

CH Terminal Unit Options

Refrigerant coil

Secondary Fan Terminal Units

Heat Pump Options

Option A: Air-to-air HP

Option B: Water-to-air HP

Option C: Ground Source HP

Night-Frost & Mixed-Mode Ventilation

See Previous

Option C: Geothermal Exchange

Heat pump

Option B: Cooling Tower

Heat pump

Option A: Air-Cooled

Heat pump

DOAS distribution

DOAS distribution

Redundant coil

Redundant coil

Redundant coil

Path to NZE Update

CHANGES TO THE 100% SD DESIGN

- Insulation removed at overhang
- 3" New Roof insulation in lieu of 4" R-13 assembly
- Existing overhang removed
- Skylights removed
- Detailed thermal zoning added to model based on latest floor plan
- Internal gains & diversity updated based on latest floor plan
- HVAC updated to match latest design

TAKINGS

- 20% increase in heating energy
- 25% increase in cooling energy
- AHRI compliance across for 10% of EU
- With 25% safety factor, current design is above NZE target

All-Air TZHP vs. Hydronic System

ANNUAL SITE ENERGY USE

HVAC Concept Overview

Process

1. Demand more from the building envelope both thermally and tightness - Architect
2. Demand more from the building occupants in terms of plug loads and day lighting - Owner
3. Utilize high efficiency systems to reduce energy demands (hydronic vs. airtside, DOAS) - Engineer
4. Right size equipment based on these demands – Accountability Required
5. Provide flexible and systems which provide exemplary environmental comfort

HVAC System Design

Resulting System Needs

- Hydronic Systems reduce energy - Radiant
- Smaller, modular control – control valves and ceiling fans vs VAV terminal units and ductwork
- Simultaneous heating and cooling – Heat Pump and/or heat recovery machines
- Decouple temperature from humidity – DOAS
- Recover energy whenever possible

System Overview

- Outdoor Air Cooled Modular Heat Pump
- Staged Pumping
- Air Cooled DOAS decoupled from waterside systems
- WSHP for transient or potentially humid spaces utilize CHWR.
- Overhead Radiant Panels for heating/cooling at exterior zones, cooling only at interior zones.
- Ceiling Fans to induce cooling and improve environmental comfort.

Overhead Radiant Systems

- Panels contain a multi-pass single circuit coil.
- Panels may be piped in series (up to 64 square feet of active panel)
- Quick disconnects for hoses allow for ease of installation and replacement.
- Piping to the panels will be PEX tubing concealed above the cloud/array.

Overhead Radiant Systems

- Radiant Panels form clouds above the occupied spaces
- All heating and cooling in these spaces are provided by the panels.
- Ventilation is cool/neutral temperature air delivered directly to the space and not directly responsible for temperature control within the zone.

Supplemental Ceiling Fans

Before fan install
Indoor temperature ~ 72 °F
(n = 29)

After fan install
and air conditioning failure
Indoor temperature ~ 80 °F
(n = 28)

Air speeds
~40 - 150 fpm

Overhead Radiant Systems

- Areas between the clouds are open to structure above and provide access for other trades mounted in the ceiling plane. No direct drilling.
- Rigid piping in exposed areas for aesthetic reasons. Insulation on supply piping only.
- Panel support system is required.
- Duct distribution is only for ventilation quantities only (about 0.15 cfm/sf)
- Air distribution is constant volume and provided by Fabric Duct, reducing diffuser count and duct branches.
- Ceiling fans throughout the space increase air mixing and induce capacity.

Overhead Radiant Systems

Interior Lobby

Semi-Final Design

REFLECTIVE SILVER

Staff Common Room

Interior Lobby

Board Room

LESSONS LEARNED (SO FAR)

- Atlanta Construction Market
- Building Infrastructure Costs
 - ✓ Plumbing System Replacement
 - ✓ Electrical System Replacement
 - ✓ Fire Protection System Replacement
- Envelope Improvement Scope to meet EUI

QUESTIONS?

GINGER SCOGGINS
gscoggins@engineereddesigns.com

www.ashrae.org/newhq

