

ASHRAE

Organization Information

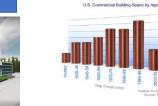
- tractors mfr and others in the building
- A Professional Organization suppo industry 57,000 members in 132 countries Headquartered in Atlanta a Standards writingorganization The leader in the industry for stan efficiency, indoor air quality.
 - ds and guidelines involving building systems, energy ASHRAE

on dedicated to ad

OUR TEAM:

- Architects:
- HOUSER WALKER ARCHITECTURE MCLENNAN DESIGN .
- PME Engineer: INTEGRAL GROUP
- Commissioning Agent: EPSTEN GROUP
- Contractor: SKANSKA
- Owner's Project Representative: Collins Project Management

Existing ASHRAE Headquarters



. 1791 Tullie Circle NE, Atlanta, GA

- 35,000 sq. ft. building – 2 stories with learning center on 1st level Renovated in 2010 to LEED Platinum level
- Sold to CHOA in 2018

- 180 Technology Parkway, Peachtree Corners, GA
- 66,000 sq. ft. building 3 stories
- Built in 1970's
- Purchased in Dec. 2018

What is our Story?

48-0681

2000

PROJECT GOAL

In developed economics, at least half of the buildings that will be in use in 2050 have already been built.^{4,5} According to a recent survey by the US. Energy information Agence 72 percent of floorstock in the U.S., or 46 billion square fect, belongs to buildings over twenty years old.⁶

2.000

"Our organization relies on harvesting the technical knowledge, volunteer energy, and expertise of our members. We want this space to inspire visitors to participate and honor them for their volunteer service and the the commitment."

- Jeff Littleton, Executive VP for ASHRAE

Owner's Project Requirement Document establishes owner goals: Mission Critical Items:

ASHRAE

ASHRAE

OWNER PROJECT REQUIREMENTS

- SAFETY safe work environment and construction
- AFFORDABLE to be constructed within the available budget
- EXCEED ASHRAE applicable Standards requirements
- ACOUSTICS Exceed Acoustical levels for Office Environments
- NET ZERO ENERGY to meet low EUI levels

DETE:

for heart for

ASHRAE)

ASHRAE

ASHRAE

OWNER PROJECT REQUIREMENTS

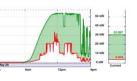
OPR Requirements to achieve Goals

- ASHRAE Standard 189.1 -2017 Exceed the requirements
- Demand Side Site Energy Consumption of less than 21.4 kBtu/SF/yr. (stretch goal to 15 kBtu/SF/yr)
- Water Efficiency design such that the project obtains 11 of 11 LEED water use efficiency points.
- Limit maximum daytime plug load to 0.4 W/SF
- Exceed Accoustic requirements listed in ASHRAE Applications Handbook by 3-5
 NC/RNC
- Deliver Outside air at a value of at least 1.3 times the requirements of Standard 62.1 and use Demand Control Ventilation (DCV) for high-occupancy spaces.
- Achieve Spatial Daylighting Autonomy (SDA) Majority of Occupants achieve generous Daylighting in work space 55% of the time.
- Achieve Resiliency at a level established by ASHRAE.

ASHRAE STANDARDS we have to meet or exceed..

ANSI/ASHRAE/IES Standard 90.1-2016 ANSI/ASHRAE 55-2017 ANSI/ASHRAE 62.1-2016 ASHRAE Standard 189.1-2017 ASHRAE Guideline 0-2013 ASHRAE Guideline 1-2017 ASHRAE Guideline 1-2017 ASHRAE Thermal Guidelines for Data Processing Environments ASHRAE Advanced Energy Design Guide for Zero Energy Office Buildings

OWNER PROJECT REQUIREMENTS


Metering Requirements:

Mandatory

- HVAC energy
 Lighting energy
- Plug Load energy
- Whole Building energy
- Photovoltaics energy
- Domestic Hot Water Energy

Desirable

- Domestic Water Usage
- Cooling Tower water usage
 Irrigation Water Usage
- Domestic Hot Water Usage

Schedule Constraints

lan., 2019: Design Team Selection Feb., 2019: Construction Manager Selection April 1, 2019: Schematic Design Complete May 15, 2019: Design Development Complete August 1, 2019: Construction Documents Complete Sept. 15, 2019 – Start Construction Phase August 15, 2020 – Construction Complete August – Sept., 2020 – Commissioning Efforts October 2020 – Full Occupancy

equest for Proposal for Planning and De Services

ASHRAE New Headquarters Buildin Peachtee Corners, GA

10000

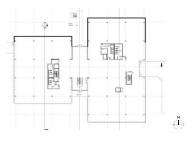
Introduction and Project Descrip
 Proposal Requirements
 Instructions

HOW DO WE ACHIEVE OUR PROJECT GOAL?

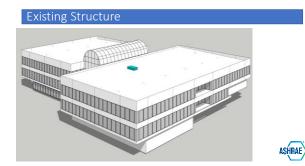
 Set Construction Budget: \$8,570,000 (\$130/sq. ft. minus donations & PV)

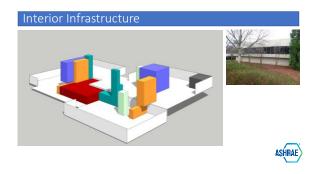
- Set Project Schedule: Must move out by Oct., 2020
- Set Project Criteria: Owner Project Requirements were set
 Hire the right team!

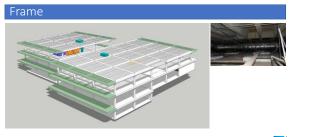
Existing Upper Level Floor Plan

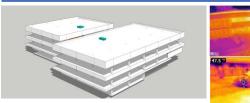

Program Summary

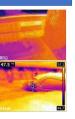
Initial	Program	(areas	in	NSF):


Departmental Areas:	
Administrative Staff:	1,044
Marketing:	2,055
Development:	633
Member Services:	1,137
Technology:	1,089
Finance & Admin Services:	1,713
Publications & Education:	2,383
Shared Conference/Meeting:	4,500
Service Spaces:	7,961
Conference Center:	6,180
Total Net Program Area:	28,725
Gross Program Area:	44,000 gsf (approx.)




Existing Middle Level Floor Plan





ASHRAE

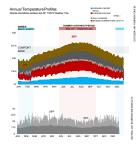
Annual Air & Ground Temperature Profiles

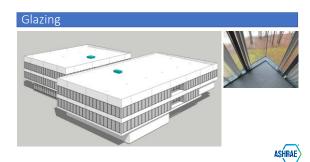
Key Climate Design Drivers • Summer: May to Spätenhar (Avg. OA-70°F) • Entraine Hd Weak Period Jul 6 - Jul 12 Maximum Temp. 98.08/F (58.70; Future climate to be accounted for • Exterior shuding branklasi May-Spatember to minima universitä summertiine salat

```
    Winter: December to February (Avg. OA< 50°F)

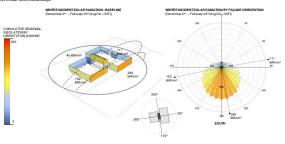
    Extreme Cold/Weak/Pariod : Jan 8 to Ja

    12, Minimum Tempe8.98°F (-12.8C)


    Leverage passive solar gainst through no

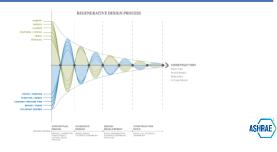

    facing lagade fenestration to 0ffast

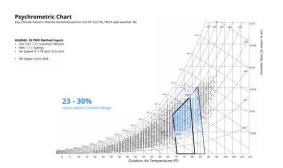
    monolement) horizon and immedia
```


```
    Diurnal Swing: Average Diurnal swing between
24% suggests an opportunity to leverage thermal
mass to reduce peakindoor temperatures, reduc
cooline energy, and improve occupant thermal
```

```
Ground and Water Temperatures: Relatively sta
ground (and Lake) temperaturessuggest a potent
bottown and take (temperaturessuggest a
```


Incident Solar Radiation - WINTER

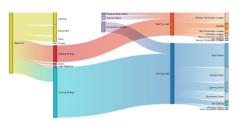

<figure>



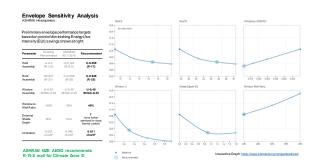
BIOLOGUE AURAUNUS Terrent auraunus De la companya de la companya

*Total roof area used for PV panel area estimate = 27,017 fb2 (2,510 m2) ** Floor area used for EUI calculation: 48,118 fb2 (4,228 m2)

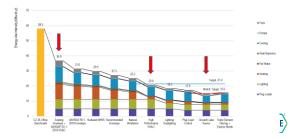
Regenerative Design



Path to Net Zero Energy


inergy Model Inpu	it Assumptions															
General Parameters			Envelope	Existing	90.1-2016	Recommended	HUNG	System Pa	rameter							
Project / Building	ASHRAE HO	_					Syste	m Descripti	an		W/ P	FP Boxes				
Occupancy	Office		Vibil Assembly	U-0.3 (R-2.0)	U-0.122 (R-8.0)	U-0.050 (R-17)	Total	Static Press	120		Supply	Crowt		in.		1/17
Location Vienther Eile	Altanta, GA		Accountry			(6-11)	FanA	/in Turn Do	in in					%		10%
Weather File Climate Zone	Atlanta, GA			110.547		11-0.039	Ventil	ation Airflow						atm.		1217
Climate Zone	ASPECAE 3A	_	Roof Assembly	U0.547 (R-21)	U-0.039 (R-25)	U-0.029 (R-25)	Total	Airflow Capa	icity (Ext	sting)				atm.	z	2,001
			,			(Total 2016)	Airflow Capa	icity (AS	HRAE 90.1-				dm.	5	4,061
55	The second se		Window	U-0.59	U-0.45	U-0.40	Dema	and Control 1	/entilation		N	one				
			Assembly	SHGC-0.52	HGC-0.25	\$100-0.25		de Economia				High Limit		e .		12°F
							Ansie	de Heat Reca	owry		Sercible E	ff / Latent Ett		%	501	6/50%
			Worker to	- 52%	475		Cooli	ng Call			DXCor	sing Coll	5	ER		9.5
			Wall Ratio	-50%	42%	40%	Heati	ng Call			Electric I	Resistance		%	1	00%
							Raha	at Col			Electric I	Resistance		%	1	00%
-	Contract of the local division of the local		Esternal			fobe further	Suppl	ly Air Tempe	rature					e .		2F
Concert of	Contraction of the second	20	Shade	NA	NA	optimized for	Suppl	ly Air Contro	i		Warmest	Zone Reset		e .		OFF .
	1		Depth			visual, thermal comfort)	Dome	estic Hot W	ater							
-							Syste	m Descripti	an		Electric R	Resistance				
1			Infiltration	0.0443	0.0448	0.0112	DHIN	System Elli	dency					%		20%
								Supply Wat						e e		40°F
							DHIN	/Delta-T Wa	ter Temp	irature				÷		10°F
Space Type Input				Inb	rnal Load I	Parameters						Therm	al Zone Pa	rameters		
Space Type	Area (SF)	Ansain Madel (N)	# People	Anapersonja (SF.Person)	(PersonSF)		WSF]	DHW [gal/holp]	Denv Japril	SFI	OA VRasijijCFN Pl	Kan9/JCHM		TStat Htg Sigdeg F]	Cig Seback Siddeg FJ	FI
Office	65,914	97%	122	500	0.0020		05	0.18	0.4	0.079	6.5	5,998	75	70	80	60
Atium	1,885	2%	283	6.67	0.1499		05	0	0.0	0.079	6.5	1,904	75	70	80	60
Labby	218	0%	40	667	0.1499		0.5	0	00	0.079	6.5	225	75	70	80	60
TOTAL	68,117		462	347	00068	40	65		- 64			8,217				

Energy Use Characterization



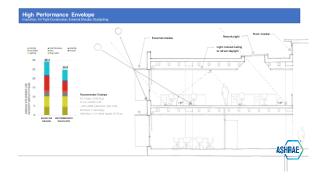
eractive Graph: https://www.elementa.msc/projects/ashrae/

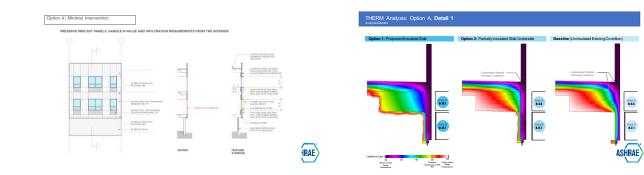
ASHRAE

Existing Envelope + ASHRAE 90.1 HVAC

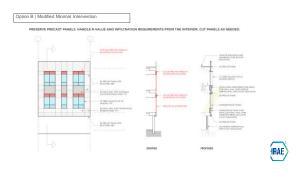
Energy Analysis Assumptions

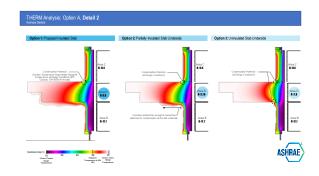
General Parameters		Envelope	Existing	90.1-2016	Recommended	WVAC System Parameters				
Project /Building	ASHRAE HQ					System Description	VW/ PFP Boxes	-	-	
Occupancy	Office	Vial Assembly	U-0.3 (R-2.0)	U-0.122 (R-8.0)	U-0.058 (R-17)	Total Static Pressure	Supply/Extends	in	415	
ocation	Altanta, GA	According			(8-11)	Fan Min Turn Down		5	10%	
Veather File Simate Zone	Adamta, GA ASHRAE 3A					Ventilation Airflow		ctm	8,317	
Linte zone Ashkae sa	ASPIKAL 3A	- Roof Assembly	U0.047 (R-21)	U-0.039 (R-29)	U-0.029 (R-25)	Total Airflow Capacity (Existing)		ctm	72,001	
		,			(Total Ainflow Capacity (ASHRAE 90.1- 2016)		chn	54,001	
E F	- FR	Window	U-0.59	U-0.45	U-0.40	Demand Control Ventilation	None			
And And And						Dry-bulb High Limit				
						Anside Heat Recovery	Sensible Eff / Latent Eff	5	50% / 50%	
		Watern								
		Window to Whill Ratio	-52%	42%	45	Anside Heat Recovery	Sensible Eff / Latent Eff	*	50% / 50%	
			-52%	42%		Anside Heat Recovery Cooling Col	Sensible Eff / Latent Eff DX Cooling Coll	% EER	50% /50% 9.5	
		Wall Ratio	-52%	42%		Ainside Heat Recovery Cooling Coll Heating Coll	Sensible Df / Latent Df DX Casiing Cail Electric Resistance	% EER %	50% / 50% 9.5 100%	
		Wall Rafo Edenal Stade	-52% NA	42% N/A	f" (to be further optimized for	Arside Heat Recovery Cooling Col Heating Col Reheat Col	Sensible Df / Latent Df DX Casiing Cail Electric Resistance	S S S	50% / 50% 9.5 100% 100%	
		Wall Ratio			f' (tobe further	Anside Heat Recovery Cooling Col Heating Col Reheat Col Supply Air Temperature	Sensible EH / Lawre EH DX Cooling Coll Bectric Resistance Dectric Resistance	SER SER S	50% / 50% 9.5 100% 100% 50%	
		Wall Rafo Edenal Stade	NA	NA	f (tobe further optimized for visual, thermal comfort)	Anside Heat Recovery Cooling Col Heating Col Reheat Col Supply Air Temperature Supply Air Control	Sensible EH / Lawre EH DX Cooling Coll Bectric Resistance Dectric Resistance	SER SER S	50% / 50% 9.5 100% 100% 50%	
		Wall Rafo Edenal Stade			f' (to be further optimized for visual, thermal	Antide Heat Recovery Cooling Coll Heating Coll Raheat Coll Supply Air Control Domestic Hot Water	Sanable DIT / Latert DIT DX Cooling Coll Discric Resistance Electric Resistance	5 EIR 5 5 7 7	50% / 50% 9.5 100% 100% 50% 50%	

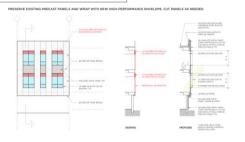

Primary Envelope Factors

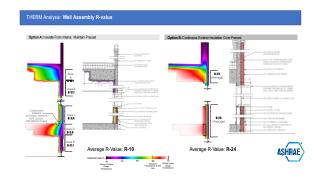

Window to Wall Ratios (WWR)

Important to define the optimum area of openings relative to achieving daylight autonomy goals, as well as maximize the thermal efficiency of the wall.

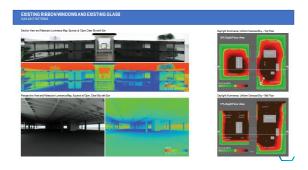

Air Infiltration and Insulation

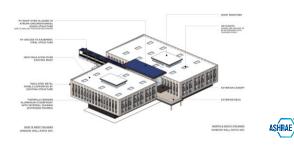

Where was the optimal R-Value for each part of the exterior envelope and how were we containing air infiltration.

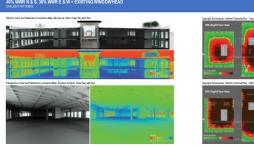


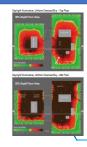

IRAE

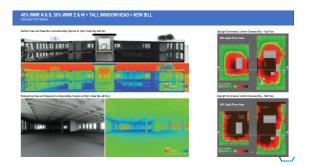
Option C | High Performance Envelope 1

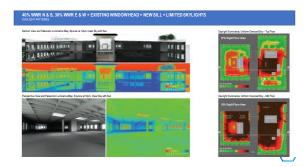


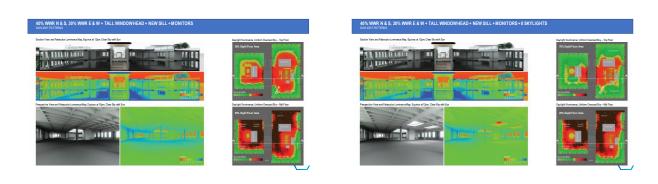


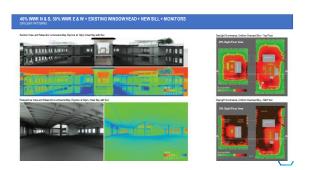

Open Office | Relationship to Light

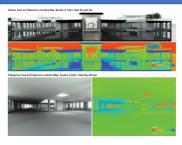


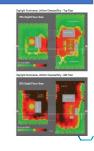










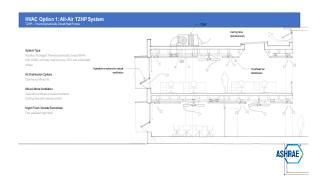


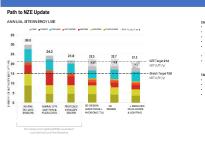
40% WWR N & S, 30% WWR E & W + TALL WINDOWHEAD + NEW SILL + MONITORS + 8 SKYLIGHTS + CEILING SPLAYS Device Frances

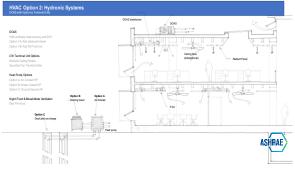


Section View and Falsecolor Luminance Map, Equinor at 12	pm, Clear Skywith Sun	Daylight Burninance, Uniform Overcast Sky- Top Floor 79% Daylit Floor Area
11,111,11,11,1000 []]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]		
10	(A)	
Distances in		
Penpective View and Falaecolor Luminance Map, Equinox	at 15pm, Clear Sky with Sun	Daylight Burninance, Uniform Overcast Sky - Md Floor
The state of the s	-	22% Dayle Floor Area
The States		

all Windows, 26 Skylights	RELAREY OCCUPIED N	
70%		
ercentage of regularly occupied workspaces on		
the upper level with useful daylight illuminance		
(>300 lux) atthe workplane		
ey Findings		
In accordance with OPR Requirements, the vast resjoilty of		
regularly occupied work spaces are expedied to receive useful daylight illuminance (>300 lux).		
18 of the 26 skylights could be considered critical to achieving		
useful daylight illuminance within occupant work areas while the remaining skylights provide daylight and a connection to the		
outdoors to citulation and office support areas	_ الداديات	
Opeque partitions running parallel to the fapade to be avoided in		
order to maintain the daylight distribution shown at right.	fluminance (ka) (9/25, noon - Uniform Sky) 2000 800 200 0	

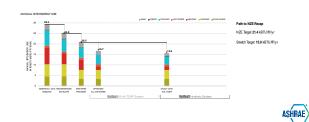






ins & diversifies updated by HVAC

ASHRAE




HVAC Concept Overview

Process

- Demand more from the building envelope both thermally and tightness Architect
 Demand more from the building occupants in terms of plug loads and day lighting Owner
- Utilize high efficiency systems to reduce energy demands (hydronic vs. airside, DOAS) -Engineer
- 4. Right size equipment based on these demands Accountability Required
- 5. Provide flexible and systems which provide exemplary environmental comfort

All-Air TZHP vs. Hydronic System

11

HVAC System Design

- Resulting System Needs
- Hydronic Systems reduce energy Radiant Smaller, modular control – control valves and ceiling fans vs VAV terminal units and ductwork
- Simultaneous heating and cooling Heat Pump and/or heat recovery machines
- Decouple temperature from humidity DOAS
- · Recover energy whenever possible

System Overview
Outdoor Air Cooled Modular Heat Pump

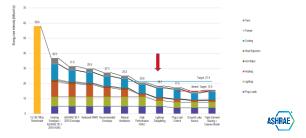
- Staged Pumping
- Air Cooled DOAS decoupled from waterside systems
- WSHP for transient or potentially humid spaces utilize CHWR.
- Overhead Radiant Panels for heating/cooling at exterior zones, cooling only at interior zones. Ceiling Fans to induce cooling and improve environmental comfort.

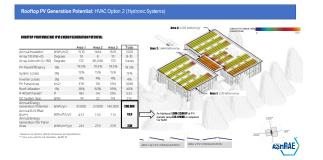
Overhead Radiant Systems

- · Panels contain a multi-pass single circuit coil.
- · Panels may be piped in series (up to 64 square feet of active panel)
- Quick disconnects for hoses allow for ease of installation and replacement.
- · Piping to the panels will be PEX tubing concealed above the cloud/array.

Overhead Radiant Systems

- Radiant Panels form clouds above the occupied spaces
- All heating and cooling in these spaces are provided by the panels.
- Ventilation is cool/neutral temperature air delivered directly to the space and not directly responsible for temperature control within the zone




Supplemental Ceiling Fans Before fan install 82% comfortable Indoor temperature ~ 72 °F _ _ _ _ _ _ _ _ (n = 29) After fan install and air conditioning failure 89% comfortable Indoor temperature ~ 80 °F (n = 28) Air speeds ~40 – 150 fpm ent: no change ASHRAE

Overhead Radiant Systems EXPOSED T SUSPENSION SYSTEM Areas between the clouds are open to structure above and provide access for other trades mounted in the ceiling plane. No direct drilling. . Rigid piping in exposed areas for aesthetic reasons. Insulation on supply piping only. Panel support system is required. • Duct distribution is only for ventilation quantities only (about 0.15 cfm/sf)

- Air distribution is constant volume and provided by Fabric Duct, reducing diffuser count and duct branches.
- Ceiling fans throughout the space increase air mixing and induce capacity.

Overhead Radiant Systems

Interior Lobby

QUESTIONS?

GINGER SCOGGINS gscoggins@engineereddesigns.com

www.ashrae.org/newhq

ASHRAE