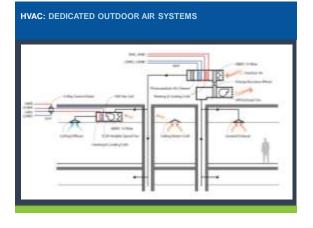


LEARNING OBJECTIVES

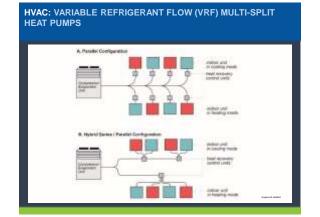
- Describe a process for creating a zero energy school
- · Apply a set of Energy Use Intensity targets to achieve a zero energy school
- Provide an overview of the Advanced Energy Design Guide for Zero Energy Schools
- \bullet Describe the interactions between envelope, lighting, plug loads and HVAC design and the integrated roles that architects and engineers should follow to achieve low-energy design

to Alexandra better of Arthous Cardining Date of all Dispersions will be reported to \$1990. And

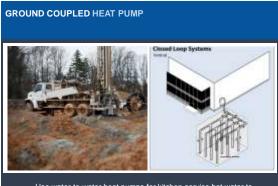

is proporti in apportenti selli the MAXMANN has continuing preferenced output form. The second se

INTEGRATED DESIGN

- Reduced Heating and Cooling Loads Architecture
 - Program
- Utilize Environmental Resources DaylightingNatural Free Cooling/Ventilation
- Improve Efficiency of Active Systems
 Optimized HVAC Systems
 Optimized Lighting Systems
- Utilize Renewable Energy Resources Photovoltaics
 - Wind


HVAC

- · Maximize full and part load efficiency.
- Demand controlled ventilation.
- Separate ventilation/dehumidification and temperature control
- Air-to-air energy recovery.
- Transport conditioning with refrigerant or water, not air.
- Exploit natural conditioning sources.
- Condition people, not spaces.
- · Eliminate reheat.
- Rightsize systems and components; quantify uncertainties; avoid blanket safety factors.



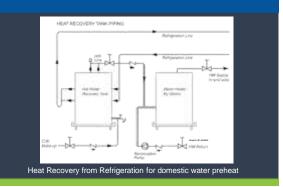
HVAC: WATER CHILLER AND DEDICATED OUTDOOR AIR SYSTEM (DOAS) PERFORMANCE REQUIREMENTS

Dedicated outdoor air systems (DOAS) for all systems	
Exhaust -air energy recovery in DOAS **	A (humid) and C (marine) zones: 72% enthalpy reduction B (dry-zone): 72% dry-bulb reduction
DOAS ventilation control	DCV with VSD
Chillers	with Air Handlers and DOAS
Air cooled chiller efficiency	Comply or exceed ASHRAE 189.1-2017 Path B ≥9.78 EER, and ≥ 15.8 IPLV
Water cooled chiller efficiency **	Comply or exceed ASHRAE 189.1-2017 Path B
Compressor capacity control -	multi-stage or variable speed driven compressor
Boiler Efficiency *	Condensing boiler, 92% efficiency

VRF heat pump with DOAS	
Air Cooled VRF multisplit with best recovery (cooling mode) **	Comply or oxceed ASHRAE 139.1-2017 -05,000 Bush; 15.0 SECR; 12.5 EER 205,000 Bush; and <135,000 Bush; 11.1 EER; 14.4 EER ~135,000 Bush and <240,000 Bush; 10.7 EER; 13.7 BEER <240,000 Bush; 10.1 EER; 12.5 BEER
Air Cooled VRF miltisplit with heat recovery (heating mode) **	Comply or exceed ASHRAE 189,1-2017 <85,000 Bm/h; 8,5 HSFF 265,000 Bm/h; 3,6 HSFF 2135,000 Bm/h; 3,4 COP 2135,000 Bm/h; 3,2 COP

Use water-to-water heat pumps for kitchen service hot water to help achieve annual thermal balance with the ground mass

HVAC: WSHP AND GSHP PERFORMANCE REQUIREMENTS


Water and ground worth fair pumps with 2614X		
CR#CompEnsion	14 P EER to Sill commence works	
COPP BORINg Efficiency***	1.7 COP is 98' starting listor	
6589 Costing STrates	10.0 ELB at Ref. annulage water	
NSP Bodog Efficiency	AATOPANE Arming was	
Transportance responsible construct	longh ange on husblik speed der vie enterneuer	
Rapp Cholaine Pooge	has laffer upped all new and National K Bootkulk Research process Association generated of Related	
Coeffing action Physic Control 7	TUD or Fata	
Actian Lifficianity 1	Conducting Sector, 2024 (Planetty)	

Use VSD pumps, automatic shut-off valves for heat pumps and intelligent controls to minimize pump energy consumption

SERVICE WATER HEATING

- Use heat recovery and/or heat pump or gas-fired large tank type systems for larger uses (kitchens).
- Locate small tank type electric heaters immediately adjacent to distributed small uses (hand wash sinks).
- Minimize jacket losses; avoid recirculation pumps for instant delivery.
 Insulate hot water pipes.
- Utilize water-sense appliances.
- Consider chemical sanitizing to enable reduction in dishwasher water temperature.

SERVICE WATER HEATING

COMMERCIAL REFRIGERATION

- Select most efficient packaged refrigeration equipment.
- Specify ECM condenser and evaporator fans.
- · Maximize part load efficiency with floating head pressure and variable setpoint control.
- · Maximize insulation for walk-in and reach-in cooler and freezer boxes.
- · Specify automatic door closers and effective door seals for walk-in.
- · Maximize floor insulation for site-built boxes.

COMMERCIAL REFRIGERATION

KITCHEN EQUIPMENT

- HEAT THE FOOD AND NOT THE ROOM.

 Maximize heat and emissions capture by proper location of cooking appliances.

 Use convection combi-ovens with highly insulated cabinets.

 Use inductive cooktops with small pans only.

 Use warming tables with recirculating water.

 No open grilles.

 No open deen fat fuvers.

- No open deep fat fryers.
 No gas-fired or electric resistance cooktops.

LESS HEAT AND SMOKE MEANS LESS EXHAUST AND MAKE-UP AIRFLOW.

KITCHEN EQUIPMENT

RENEWABLE ENERGY SYSTEMS

AEDG IS NOT A RENEWABLE ENERGY SYSTEMS DESIGN GUIDE

- · Size array based on optimized building EUI.
- · Configure roof for warranty-sensitive installation of photovoltaic panels.
- Locate panels for best orientation and avoidance of shadowing.
- · Configure electrical distribution system to accept power input from PV system.
- · Negotiate power contract with local utility.
- · Anticipate "unanticipated" factors that reduce production

RENEWABLE ENERGY SYSTEMS

Daniel H. Nall, PE, FASHRAE, FAIA, LEED Fellow, BEMP, HBDP, CPHC Dnall@Syska.com