

Adam Rendek, LEED AP Matt Grinberg, PE, BEMP, LEEP AP Stantec adam.rendek@stantec.com matt.grinberg@stantec.com

Conference Paper Session 11 Energy Modeling vs. Actual Building Energy Consumption

Architecture, Cartography and Energy: Mapping the Way We Share Information to Build Better Buildings

2013 Annual Conference, Denver, Colorado

Learning Objectives

- Explain misaligned expectations between architects and buildings . engineers
- Describe how customized workflow maps can optimize the energy modeling process.
- Have gained knowledge from experience from an evaluation of nine properties with energy efficient multi-family dwellings. Have an insight to what might be the reasons to the gap between measurements and simulation results.
- Distinguish between the two general factors causing the discrepancy between predicted energy performance and actual energy consumption.
- Recognize that even projects following the LEED process do not always perform as well as predicted.

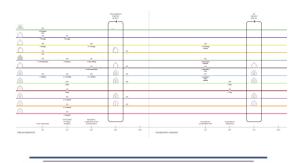
IRAE is a Registered Provider with The American Institute of Architects Con completion of this program will be reported to ASHRAE Records for AIA me

ting, or

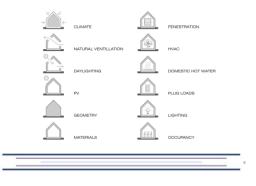
Acknowledgements

- · Dr. Rosamund Hyde Stantec
- · Nicole Collins Stantec
- David Scheer Autodesk
- Adam Menter Autodesk
- Asbjorn Levring Danish Technology Institute
- Daniel Nielsen Danish Technology Institute

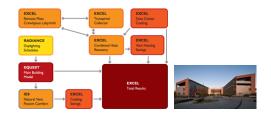
Outline/Agenda


- · Issues with current design tools and practices.
- Misaligned expectations between architects and buildings engineers.
- · Customized workflow maps to optimize the energy modeling process.

Energy Targets & Global Trends



Creating Workflow Maps


Types of Exchanged Information

Design Tools vs. Holistic Analysis

Design Tools vs. Holistic Analysis

Types of Exchanged Information

VENTILATION	12		
DAY USHTING	<u> </u>		
~	\land		
GEOMETRY			
MATERIALS	\triangle		
FENESTRATION			
NNC.	<u>ه</u>		
DHM.	<u>í</u>		
PLUELOADS	Â		
LIGHTING	Â		
OCEUPANCY	\triangle		
	PRE-SCHEMATIC		

How much energy are we using? What's important to focus on? Are we meeting our goals?

Timeline

MATE					
NTLATION					
METRY					
TURALS	\triangle				
ESTRATION	俞				
¢.					
	<u>í</u>				
ELDA05	Â				
rthag					
UPANCY	\triangle				
	11% Ре-аснемила	28	50%	875	330%

Coordination Events

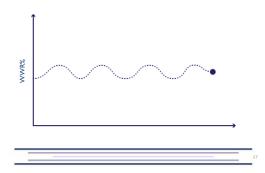
DUMATE				-					
ADDITION									
DIFUSHING	<u> </u>		_	-	_				
	\cap								
BOMETRY									
AATOBALS	\cap								
ENESTRATION	俞								
anc	Ô								
penar									
LUELOADS	企								
KOHTAKO									
CEUPANCY									
	i.	·····	i	!	i				
		JUNE ANALYSIS	2	[PROGRAM FITTI	NG/20NING	MASSING/ CI 50%	INSTR. STRATEGIES	[PRELMINRY BON	MERCH MODEL
	-	IE-SCHEMKTIC							

Station Markers

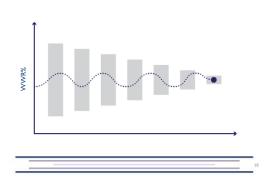
LIMATE		450			
		450 E Rull, Typical Outa			
ENTRATION		200	350		
	1.0	C Strategy	C Studegy		
OF USHTING	- C2-	150 Strategy		200	
	1.0	Strategy.		A.S. Southey	
	\cap	300			
	~	9			
ECMIETRY		200 At Site Beamlery	200	380	
		At Site Beandary	E Peolprint	E Nex/ Swifing	
GATERIALS	\cap			180	
				380 A Constr. Type	
ENESTRATION		100	125	225	
		100 E WANIOS	AL WWITE	ALE WWPN	
NHC .	(ii)		100		
			100 5 Tro#		
+10	6		150		
			150 5 Type		
LUE LONOS					
0000000			100		
IOHTAIG	1.2.1		100		
CEUPANCY	1.4.1		100 A People/SF		
			A People/SF		

 INT ANKING
 IPHOLEMENT (THIC) 201400
 Intelline(20140) CONTR. CONTROLS
 IPHOLEMENT DARIES VECKL

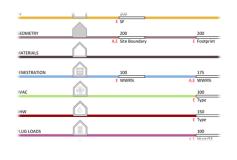
 INF
 2015
 2015
 2015
 2015
 2015
 2015


 INF
 2015
 2015
 2015
 2015
 2015
 2015
 2015

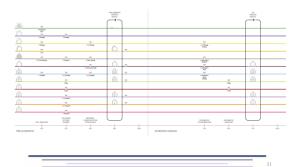
 INF
 2015
 2015
 2015
 2015
 2015
 2015
 2015


Level Of Detail

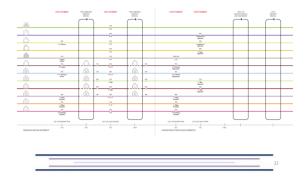
v		E SF	
EOMETRY		200	200
IATERIALS	\square	A,E Site Boundary	E Footprint
ENESTRATION		100	175
		E WWR%	A,E WWR%
VAC	(9)		100
	~		E Type
HW			150
	~		E Type
LUG LOADS			100
			A.F. Watt/SF


Level Of Detail

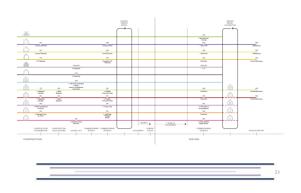
Level Of Detail



Specific Details



2.06476		410]
	~	E Rull, Typical Outa				
VENTILATION		200	250			
	- 20	Strategy	C Stutegy			
DAY USHTING	1.2	250		290 A.S. Strategy		
	~			A.S. Smategy	· · · · ·	
ev.		200				254
		1.9				
GEOMICTRY		200	200	380		
	~	At Site Beandary	C Poolprint	E Mass/Shading	~	
AMATERIALS				130		150
	~			A Constr. Type		
FENESTRATION	(11)	100	125	225		275
	~	E WATCH	AL WHEN	AL WHEN		
RANG	(e)		100		(i)	150
	~		6 Type		Institut -	
D+W	6		150			1
	~		< Type		÷	
PLUELOADS	(i)		180			159
	-		AL WYEAR			
LIOHTAKS	- A		100			150
100			AL Wenter			
OCCUPANCY			100			1
00.00770901	1.1.1		A People/SF			<u> </u>
		STE ANALISIS	[PROGRAM FITTING/ 20	NING MASSING/ CONSTR. STRA		IN ENERGY MODEL
		11%	2/5	50%	80%	300%
	195	SCHEMATIC				


Pre-Schematic & Schematic Design

Design Development & Construction Documents

Construction & POE / M&V

Conclusions

- The language of information exchange
- Implications for other disciplines
- Challenges of implementation
- Next steps

Bibliography

- American Institute of Architects. 2012. An Architect's Guide to Integrating Energy Modeling in the Design Process.
- Levring, A., and Nielsen, D. 2012. Schematic Strategies and Workflows for Sustainable Design Development. Autodesk University Lecture.
- Grinberg, M., and Rendek, A., and Menter, A. 2012. Energy Modeling Workflow Maps: A Tool to Improve Architecture Practice. Autodesk Blog Article.
- Grinberg, M., and Rendek, A. 2013. Architecture & Energy in Practice: Implementing an Information Sharing Workflow. 13th International Conference of the International Building Performance Simulation Association. Manuscript submitted for publication.

Questions?

Adam Rendek, LEED AP adam.rendek@stantec.com

Matt Grinberg, PE, BEMP, LEEP AP matt.grinberg@stantec.com